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ABSTRACT: Although decision-making in response to tornado warnings is well researched, most studies do not examine
whether individual responses to these warnings vary across different geographical locations and demographic groups. This
gap is addressed by using data from a decision experiment that places participants virtually in a simulated tornado warning
and asks them to minimize the costs of their decisions. The authors examine the following: 1) what demographic attributes
may contribute to choices to minimize costs to protect assets at a specific location in a tornado warning, 2) whether there is
a spatial component to how these attributes influence decision-making, and 3) if there are specific U.S. regions where indi-
viduals do not make protective decisions that minimize their overall cost. Multilevel regression analysis and poststratifica-
tion are applied to data from the simulated decision experiment to estimate which demographic attributes and National
Weather Service CountyWarning Areas are most associated with the costliest protective decisions. The results are then an-
alyzed using spatial autocorrelation to identify spatial patterns. Results indicate that sex, race, and ethnicity are important
factors that influence protection decisions. Findings also show that people across the southern portions of the United States
tend to make more costly protective decisions, as defined in this work.

SIGNIFICANCE STATEMENT: Tornadoes, although rare, threaten both life and property. Studies have shown that
certain demographic groups are more negatively impacted by disasters than others and are at higher risk of severe
weather hazards. We ask if there are demographic characteristics or geographic locations in common among people
who are more prone to making protection decisions during tornado warnings to minimize economic costs. Results
can help warning providers, such as the National Weather Service, direct resources and education to specific types of
decision-makers or locations to improve sheltering decisions.
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1. Introduction

Annually, the United States averages more than 1000 tor-
nadoes (NCEI 2020). Tornado outbreaks on a large spatial
scale or those with violent tornadoes are rare but account for
most deaths and injuries (Ćwik et al. 2021; Simmons and Sutter
2011). For example, the 25 April 2011 Super Outbreak across
the southern United States, the EF5 tornado on 22 May 2011 in
Joplin, Missouri, and the EF5 tornado on 20 May 2013 in
Moore, Oklahoma, caused 316, 158, and 47 direct fatalities, re-
spectively (NOAA 2011a,b, 2014). These events also can be
costly, with the former outbreak assessed at $13.7 billion (in
2023 dollars; NCEI 2023). Postevent assessments by the Na-
tional Weather Service (NWS) documented that although these
events had good forecasts with adequate lead times, residents
were reluctant to personalize the threat and seek appropriate
shelter (NOAA 2011a,b, 2014). As a result, the National Oce-
anic and Atmospheric Administration (NOAA) and its NWS

continue to seek a better understanding of how people make
decisions to protect themselves and their property in the face of
tornado events (National Weather Service 2019; Uccellini and
Ten Hoeve 2019).

In response to this need, researchers have studied decision-
making under uncertainty as related to tornadic events (e.g.,
Slovic 1987; Nagele and Trainor 2012; Joslyn and LeClerc
2012; Durage et al. 2016), yet most studies do not examine
how living in a different NWS County Warning Area (CWA)
may affect responses. Because tornado climatology varies
across the United States, it is possible that people’s perceptions
of tornado risk and their resulting decision-making processes
may vary as well. Any differences need to be recognized so
that local NWS forecasters, media, and emergency responders
can focus their messaging more effectively. The goal of this re-
search is to enhance the current knowledge regarding if and
how tornado warning decision-making varies across the United
States and if certain demographic groups respond differently
to a warning.

We briefly summarize some of the relevant literature about
decision-making during natural hazards in section 2, conclud-
ing the section with our research hypotheses. Section 3 docu-
ments the data and methods applied, and section 4 overviews
the study results. Sections 5 and 6 discuss the relevance of the
results and summarize the study, respectively.
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2. Background

Risk and decision-making during disasters has been re-
searched extensively resulting, in part, through several theo-
retical frameworks (e.g., Mileti and Sorensen 1990; Lindell
and Perry 2012). In these frameworks, individuals are exposed
to a threat (e.g., tornado), gather information, and analyze
their situation to determine their risk before they respond to
the threat. An important step for achieving an appropriate re-
sponse, such as taking protective action, is for the individual
to believe the threat is real and to personalize the risk (i.e.,
believe the threat could happen to them). To determine their
own risk, a person may use social interactions, individual atti-
tudes, environmental cues, cultural knowledge, or their sense
of place (Kasperson et al. 1988; Masuda and Garvin 2006).
Many of these factors are related to where a person lives and,
thus, can vary geographically.

Prior research has analyzed geographic differences in tornado
hazard exposure or tornado climatology (e.g., Boruff et al. 2003;
Ashley 2007; Brotzge et al. 2011; Ashley and Strader 2016), tor-
nado risk (e.g., Strader et al. 2021), weather salience (Stewart
et al. 2012), and social vulnerability (e.g., Cutter et al. 2003;
Cutter and Finch 2008; Emrich and Cutter 2011). For exam-
ple, Boruff et al. (2003) assessed the frequency and location
of tornadoes across the contiguous United States that re-
sulted in a human fatality or injury or in reported economic
damage (from 1950 to 1999). They found that tornado hazard
density was highest east of the 100th meridian except for New
England and portions of Appalachia. In a spatial and tempo-
ral analysis of tornado fatalities, Ashley (2007) documented
that a region encompassing the lower Arkansas, Tennessee,
and lower Mississippi River valleys had the largest concentra-
tion of tornadoes associated with fatalities from 1950 to 2004.
However, the region was not the center of the greatest overall
frequency of all tornadoes or significant (F21) tornadoes; in-
stead, that area was located over much of Oklahoma and
parts of southern Kansas and northern Texas. The mid-South
region (i.e., most of Alabama and Mississippi, eastern por-
tions of Arkansas and Louisiana, southern Tennessee, and
western Georgia) had the highest tornado disaster potential,
or annual chance an EF11 tornado path would intersect with
developed lands, according to research by Ashley and Strader
(2016).

Strader et al. (2021) examine tornado risk, exposure, and
vulnerability combinations by NWS CWA. They found sub-
stantial differences among many CWAs as related to the of-
fices’ false alarms, unwarned tornadoes, and lead time for
tornado warnings as well as tornado climatology (e.g., nonfa-
tal and fatal tornado frequencies, EF11 path density, and fa-
talities per capita). Similarly, Harrison and Karstens (2017)
demonstrated that the mean and maximum numbers of tor-
nado warnings issued per convective day varied by CWA,
with higher values from CWAs in the lower Mississippi River
valley. Using data from 2000 to 2004, Brotzge et al. (2011)
documented geographical variation of false alarm ratios
across four regions of the contiguous United States}West,
Plains, Midwest/East, and Southeast}with the Midwest/East
and Southeast having significantly higher false alarm ratios

than theWest or Plains. On the other hand, Chamberlain et al.
(2023) found that geographic location did not vary strongly
among the NWS Central, Southern, and Eastern regions as re-
lated to the probability of detection of the first, middle, or last
tornado in a tornado outbreak. Neither Brotzge et al. (2011)
nor Chamberlain et al. (2023) examined these warning perfor-
mance statistics on the CWA scale, however.

Strader et al. (2021) also documented differences among
the CWAs in four social vulnerability themes: 1) socioeco-
nomic status (e.g., persons living in poverty, unemployment,
and income per capita), 2) household composition and disabil-
ity (e.g., persons over the age of 65 or under the age of 17,
single-parent households, disabled persons), 3) minority sta-
tus and language (e.g., persons who are non-White or speak
English “less than well”), and 4) housing type and transporta-
tion (e.g., mobile and manufactured housing, multiunit struc-
tures, households with no vehicle). Because of these differences
across CWAs, Strader et al. (2021) recommended that individ-
ual NWS forecast offices develop their own climatologies of tor-
nado risk and assessments of exposure and vulnerability as well
as enhance training modules according to this CWA-specific
knowledge. Finally, they encouraged additional research that
connects environmental factors to potential impacts on people
and the tornado warning process.

Studies also have compared geographic distributions of risk
reception, perception, and response to tornadoes based on tor-
nado climatology. For example, Ripberger et al. (2020) and
Allan et al. (2020) analyzed survey data from the Severe
Weather and Society Survey (WxSurvey, administered through
the University of Oklahoma’s Institute for Public Policy Re-
search and Analysis) to test whether survey responses related to
the respondent’s location. Initiated in 2017, WxSurvey asks re-
curring questions annually to measure individuals’ reception,
comprehension, and responses to tornado warnings and other
natural hazards (tropical weather, floods, etc.) (Ripberger et al.
2019). Ripberger et al. (2020) found that, on average, reception,
comprehension, and response to tornadoes were highest in the
central United States, where exposure to and experience with
tornadoes are generally high. Allan et al. (2020) also analyzed
weather hazards and found that risk perception and response
correlated with hazard climatology. Tornado risk perception
was also highest in the central United States, matching the areas
with highest exposure to tornadoes.

Stewart et al. (2012) surveyed 1465 participants across the
United States to compare the degree to which people are psy-
chologically attuned to and affected by weather and weather
changes, defined as “weather salience.” Participants who lived
in temperate (mesothermal) or cold/continental (microther-
mal) climates had higher weather salience than those from
dry (arid/semiarid) climates. Those living in dry climates were
comparatively less attentive to weather information than
those living in the other two climate regions when it might re-
sult in a delay, cancellation, or holiday from work or school.
Participants in dry climates also sought weather forecasts for
fewer time periods than those in temperate or cold/continental
climates.

Studies also demonstrate that emotional connection to a lo-
cation, or place attachment, can influence decision-making.
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An individual’s attachment to a place, such as their home,
church, or favorite walking trail, influences how they perceive
risk in that place (Masuda and Garvin 2006). For example,
Klockow et al. (2014) interviewed residents of Alabama and
Mississippi after the April 2011 tornado outbreak, document-
ing that local knowledge of place (e.g., nearby river, tree-
cleared construction area) by the residents influenced their
risk perception and resulting actions. Peppler et al. (2018)
noted that residents of central Oklahoma perceived their tor-
nado risk to be different than others’ risk based on their
knowledge of the locations of a river, higher elevations, Na-
tive American burial grounds, a major interstate highway,
prior tornado paths, and the urban heat island. These and
other studies (e.g., Masuda and Garvin 2006; Donner et al.
2012; Paul et al. 2015; Jauernic and Van Den Broeke 2016;
Sanders et al. 2020) have highlighted that individuals incorpo-
rate their understanding of place with tornado warning infor-
mation to evaluate their risk and make decisions.

Research hypotheses

Although these studies have highlighted important geospa-
tial patterns related to tornadoes, their impacts, and people’s
perceptions of tornado risk, they have not examined decision-
making in response to tornado warnings across different re-
gions of the United States at the scale of NWS CWAs. Based
on this prior research and gap in knowledge, this study asks the
following question: How do protective decisions that are
prompted by a tornado warning vary spatially by NWS County
Warning Area? A CWA is the multicounty jurisdiction (usually
covering only a part of a state or states) of a single NWS
Weather Forecast Office. NWS forecasters from a single office
warn for tornadoes and other hazards in their CWA according
to their local data, knowledge and experience of the warning is-
suer, office policies, and other input. Hence, the processes that
result in a tornado warning may vary by CWA. Thus, the pub-
lic’s response decisions may vary across CWAs.

We pose the following hypotheses:

• There will be differences in the decisions made by individu-
als from different demographic groups as related to pro-
tecting an asset during a tornado warning.

• These differences will contribute to warning-related decision-
making that varies geographically across the contiguous
United States.

• There will be clusters of NWS CWAs where warning-related
decision-making will be more similar than other clusters.

Null results will be important to inform the NWS that nation-
ally consistent warning graphics, similar to those used in this
study, should result in geographically and demographically con-
sistent decision responses. Significant results will highlight geo-
graphic locations or demographic groups that the NWS can
prioritize in their tornado warning outreach activities, providing
more equitable services across the nation. In addition, if there
are clusters of CWAs that are more alike in decision response
than other CWAs, there is an opportunity for them to work to-
gether or to share successful outreach materials with each other.

3. Data and methods

a. Simulated tornado-warning experiment

Although there are a variety of ways to answer these ques-
tions, this study applied data from a nationwide experiment de-
signed to study “potential influences on subjective estimates of
threat within the geospatial context of a tornado warning”
(Klockow-McClain et al. 2020; see this citation for a full descrip-
tion of the experimental context). We chose to use this dataset
because it spanned the contiguous United States, was census-
balanced by several demographic attributes (i.e., education,
household income, age, and sex), had a large sample size
(n5 5564), and was quality assured, consistent, and well docu-
mented. It also focused on the decision context of a tornado
warning and was readily accessible to the author team. Limita-
tions of the dataset, particularly as related to the hypotheses,
are addressed in section 5d.

A web-based survey provided a simulated decision context
whereby each participant was randomly and evenly assigned
one of six tornado warning displays for any given trial in the ex-
periments (Fig. 1). The six displays comprised two deterministic
warnings (i.e., one with a 30-min lead time and one with a 1-h
lead time) and four probabilistic warnings (i.e., 1-h lead time
with either no color or sequential, divergent, or spectral color
themes). In the deterministic forecasts, visually resembling real-
istic warnings issued by the NWS, the forecast probability of be-
ing affected by a tornado was 100% somewhere within the
polygon and zero percent outside of the polygon. For the proba-
bilistic warnings, the corresponding probability for one of the
four sections of the polygon was written next to that section
(Fig. 1). For any given warning graphic appearing on the partici-
pant’s screen during a trial, they were randomly assigned a loca-
tion A–D (dots in Fig. 1) where they were hypothetically in
charge of sheltering aircraft.

During each trial, the participant would choose whether to
protect/shelter the aircraft at their location or to not do any-
thing. After the choice was made, the computer calculated
whether a tornado occurred based on the probability at the
participant’s assigned location (using random sampling with-
out replacement over multiple trials). If the participant chose
to protect their aircraft, they would obtain a hit (H) when the
computer generated a tornado and a false alarm (F) when no
tornado occurred. If they chose not to protect, they gained a
miss (M) if a tornado occurred and a null (N) when there was
not a tornado. Associated costs were assigned accordingly
(H 5 2$3,000, F 5 2$3,000, M 5 2$6,000, N 5 $0). This ex-
perimental design was a modification of a traditional cost–loss
decision problem (Thompson 1952) that has been applied to
other studies of weather forecasting (e.g., Murphy 1976; Katz
and Murphy 1997; Howard et al. 2021).

b. Data

1) SIMULATED TORNADO RESPONSE

Each participant engaged in 96 total decision trials (i.e.,
through computer-generated distributions of graphics types,
airport locations, and tornado probabilities). The nationwide
survey included 5564 participants, with about 100 respondents
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from each state (Klockow-McClain et al. 2020), although only
4461 participants completed all 96 trials. We removed those
participants who did not provide their geographic location as
well as those from CWAs in Alaska and Hawaii (outside our
study domain), resulting in 4331 participants. Demographic
and socioeconomic information included sex, age, race, eth-
nicity, household income, employment status, education, and
the state and county of residence. This information was op-
tional for all participants. Most participants chose not to in-
clude their income, employment status, or education; thus, to
maintain an adequate sample size, we omitted these variables
from the following analysis.

We assumed no carryover effects from one trial to the next;
thus, each trial was considered independent. For any given
trial that incurred a tornado, it was costlier to not protect (M;
loss of $6,000) than to protect (H; cost of $3,000). For a trial
that did not incur a tornado, it was costlier to protect (F; cost
of $3,000) than to not protect (N; $0). Hence, the costliest de-
cisions were those that resulted in M and F. The independent
variable for our study was the proportion of costliest decisions
(PCDs) over the 96 trials, or PCD5 (M1 F)/96.

We sorted participant PCD values by CWAs because the sam-
ple size was not large enough for county- or climate division-level
groupings. CWAs are more similar in size across the contigu-
ous United States than states, and tornado warnings are issued
within CWA boundaries rather than state boundaries. Also,
prior literature on warnings and other forecasts has focused on
CWA as the geographical unit of data aggregation and re-
search (e.g., Harrison and Karstens 2017; Henderson et al.
2020; Strader et al. 2021).

2) TORNADO FREQUENCY AND CENSUS DATA

To determine if tornado exposure was related to decision-
making during the simulation, we used the mean number of
tornadoes per year by CWA from NOAA’s Storm Events
Database. Figure 2 depicts the event frequency in percentiles

FIG. 1. Cartographic designs of tornado warnings from Klockow-McClain et al. (2020) showing two deterministic and four probabilistic
(including no color and three color schemes) graphics. The current study uses this nationwide decision experiment.

FIG. 2. Mean numbers of tornadoes per CWA by percentile rank.
Blues and purples (greens and yellows) indicate lower (higher) per-
centiles. Data from the NOAA Storm Event Database (NCEI
2022). Image generated in WxDash, an online tool of the University
of Oklahoma’s Institute for Public Policy Research and Analysis
(https://crcm.shinyapps.io/WxDash/#section-risk-perceptions).
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to rank each CWA compared to others. Note that the CWAs
in the central and southern United States have the highest
percentile rank for tornado frequency.

Finally, U.S. census data aggregated by CWA were pro-
vided by Dr. J. Ripberger [2020 personal communication,
used in Ripberger et al. (2020)] from the University of Okla-
homa’s Institute for Public Policy Research and Analysis
(OU IPPRA). The census data originated from the U.S.
Census Bureau website for the years 2010–18}the latest
years with complete census data records available at the
time of this study. The dataset included county resident pop-
ulation estimates by age, sex, race, and Hispanic ethnicity.

c. Methods

We used multilevel regression analysis and poststratification
(MRP) 1) to analyze the demographic of the participants who
were associated with higher PCD during the tornado warning
experiment and 2) to determine whether these participants
were more likely to be located within certain CWAs. We ap-
plied spatial autocorrelation to examine if there were spatial
patterns where PCDs were most prevalent. Finally, two-sample
Student’s t tests were performed to determine whether the de-
mographic groups identified as having higher PCDs were more
likely to overestimate or underestimate their risk.

1) MRP

Multilevel regression analysis and poststratification is a
type of small-area estimation (SAE) that has been applied to
downscale data from larger to smaller population characteris-
tics (Gelman et al. 1997; Lax and Phillips 2009; Ripberger et al.
2020). SAE “is a statistical technique used to produce statistically
reliable estimates for smaller geographic areas than those for
which the original surveys were designed” (Zhang et al. 2015).
SAE techniques have been applied to predict voting patterns in
relatively small regions (e.g., states or voting districts) using data
from, for example, national surveys of political opinion. MRP has
been applied in election forecasting, voting patterns, and other
areas in political sciences primarily (Hanretty 2020). In the past
several years, its use has been expanded to study how people re-
spond to extreme weather or climate change (e.g., Howe et al.
2015; Zhang et al. 2018; Howe et al. 2019; Allan et al. 2020;
Ripberger et al. 2020; Howe et al. 2023).

MRP uses individual characteristics and survey responses
based on location to estimate what the broader response of the
public may be in geographic units (Buttice and Highton 2013).
Spatial characteristics of the dataset are retained in cases where
the region’s sample size is sufficiently large. In this case, MRP
models responses in the region as a function of both demo-
graphic and geographic variables (Lax and Phillips 2009), using
data from the broader sample. To do so, MRP applies a multile-
vel regression to create a preference estimate for each type of
person in the broader dataset and then weights those preferen-
ces by population frequency within the smaller region (Buttice
and Highton 2013). Hence, MRP uses data from the full experi-
ment to predict how different types of people respond to the
surveys and applies that information, as needed, in predefined
geographic units with an insufficient sample size.

For our study, the geographic units are CWAs, the inde-
pendent variables are the demographic characteristics of the
participants, and the dependent variable is their PCD over
the 96 trials, or (M 1 F)/96. Hence, the participant’s PCD
varies as a function of their demographic attributes (sex, age
group, ethnicity, and race) and their CWA as follows:

yi 5 b0 1 asex
j[i] 1 a

age
k[i] 1 a

ethnicity
l[i] 1 arace

m[i] 1 aCWA
s[i] , (1)

where

asex
j ; N(0, s2

sex), j 5 0 or 1,

a
age
k ; N(0, s2

age), k 5 1, 2, or 3,

a
ethnicity
l ; N(0, s2

ethnicity), l 5 0 or 1,

arace
m ; N(0, s2

race), m 5 1, 2, or 3; and

aCWA
s ; N(tornado exposures, s

2
CWA), s 5 1,… , 116:

In Eq. (1), b0 is the intercept and a is the offset (Buttice and
Highton 2013), where each a classifies the characteristics of
the participants in a given number of categories (i.e., j, k, l, m,
n, and s). For instance, asex

j represents sex in two categories in
the decision experiment: female (level 0) and male (level 1).
Age groups use three categories from the U.S. census: ages
18–34 (level 1), ages 35–59 (level 2), and ages 60–110 (level 3).
The youngest and oldest participants were 18 and 82 years old,
respectively. Ethnicity is either non-Hispanic (0) or Hispanic
(1) and race is White (1), African American/Black (2), or other
(i.e., not White and not African American/Black) (3). CWA has
116 categories that are associated with Albuquerque, NewMex-
ico (ABQ) (1), to Las Vegas, Nevada (VEF) (116), numbered
alphabetically, for CWAs in the lower 48 states.

The regression model assessed how much influence each of
the independent variables had on the PCDs, and the model was
applied to predict the PCDs made by specific types of people.
The multilevel regression model predicts outcomes based only
on the participant’s responses, their CWA (i.e., geographic loca-
tion), and their demographic characteristics. To better represent
the population of the entire CWA, poststratification includes the
demographics in the U.S. census for each CWA to make the pre-
diction, generating weighted values (u) for each demographic–
geographic combination (r) (Buttice and Highton 2013; Allan
et al. 2020; Ripberger et al. 2020). The frequencies (N) and the
weights (u) are used to calculate the MRP estimates for each
CWA:

YMRP
CWA 5

∑
r2CWA

Nrur

∑
r2CWA

, (2)

where ur are the weighted predictions from the multilevel re-
gression model output for each demographic–geographic com-
bination and Nr are the population frequencies (from U.S.
census data) for each demographic–geographic combination.
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The results from the MRP analysis will output the estimated
mean PCD for each CWA. Thus, MRP compares results
from each CWA as individual units and ignores any poten-
tial between-neighbor (i.e., neighboring CWAs) correla-
tions (Xu 2014). MRP addresses sampling limitations found
in many internet-based surveys that do not have truly ran-
domized samples (e.g., from nonresponse bias) or do not
have sufficient sampling of various demographic groups at
subnational scales (e.g., Downes et al. 2018).

2) SPATIAL AUTOCORRELATION

We apply spatial autocorrelation to identify if there are
between-neighbor correlations or spatial patterns in the data-
set. Spatial autocorrelation compares a datum from one spa-
tial location, such as a CWA, to the datum from its “nearest
neighbor” (i.e., adjacent CWA) to determine if they are re-
lated to each other. A variety of phenomena, such as epide-
miology for disease patterns, economic geography for crime
patterns, and ecology for migration, have been assessed using
spatial autocorrelation (Ord and Getis 1995, 2001). Here, we
apply spatial autocorrelation using the Moran’s I and Getis–
Ord statistics to identify patterns, if any, across CWAs.

The Moran’s I statistic is perhaps the most popular method
to test spatial autocorrelation (Ord and Getis 1995; Anselin
1995). We constructed a spatial weights matrix using Queen
nearest neighbors and then applied the matrix in the Moran’s
I calculation [Eq. (3)] to test whether the CWA-averaged
PCD in a CWAwas spatially correlated with any of its nearest
neighbors. The equation is as follows:

I 5

N∑
n

i51
∑
n

j51
wij(xi 2 X )(xj 2 X )

∑
n

i51
∑
n

j51
wij

( )
∑
n

i51
(xi 2 X )2

, (3)

where N is the number of observations, in this case, the num-
ber of CWAs; X is the mean of the PCD scores across all
CWAs; xi is the average of the PCDs for all individual re-
spondents within a particular CWA; xj is the average of the
PCDs for all individual respondents at a different CWA; and
wij is the spatial weight from CWAi to CWAj (Cao 2014).

To determine if there were CWAs where participants had
higher PCDs than surrounding CWAs, we calculated the
Getis–Ord statistic to identify spatial clusters, or hotspots,
of high values of PCDs. The term Gi measures the degree of
association across all values at all locations (Getis and Ord
2010) using only values in its neighborhood, as follows:

Gi 5

∑
jÞi

wijxj

∑
jÞi

xj
, (4)

where wij is the spatial weight from CWAi to CWAj and xj is
the value of a neighboring CWA. A positive (negative)Gi de-
notes a spatial cluster of high (low) values, that is, a hot (cold)
spot (Anselin 2021).

3) STUDENT’S T TEST

We conducted two-sampled t tests [W. S. Gosset writing as
Student (1908)] to ascertain whether differences in PCDs by
demographic group resulted from an overestimation (more
false alarms) or underestimation (more misses) of their risk.
We tested whether the following pairs of populations were sta-
tistically different: 1) male (n5 2475) versus female (n5 1856),
2) non-Hispanic (n5 3934) versus Hispanic (n5 397), 3) White
(n 5 3460) versus African American/Black (n 5 372), and
4) White (n 5 3460) versus other races (n 5 499). Here,
p values # 0.05 indicate significance.

4. Results

The first research question asks if there are demographic at-
tributes that contribute to the proportion of costliest decisions.
To answer this question, the first step in MRP is creating a mul-
tilevel model that will show if there are significant differences
among demographic groups, indicating there are certain types
of people who are associated with higher PCDs. The second
question determines if these attributes contribute to decision-
making that varies geographically across the United States. The
poststratification step in MRP is used to map predicted propor-
tions of costliest decision scores across the United States accord-
ing to census data. The map highlights where there are CWAs
with populations that are associated with higher PCDs. The final
question asks if there are regions of the United States that have
similar proportions of costliest decisions. To answer this ques-
tion, spatial autocorrelation of the PCD scores is used to deter-
mine if there are broader regions, or hotspots, in the United
States where people may be more prone to making costlier shel-
tering decisions.

a. MRP results

The multilevel regression model was developed to determine
if there were significant differences among demographic groups
to address our first hypothesis that there will be differences in
the decisions made by individuals from different demographic
groups. In this case, we pooled data for all participants, regard-
less of their CWA and the graphic type that were assigned (see
Fig. 1). Table 1 displays the summary statistics: the intercept
(expected outcome), an estimate of the amount each demo-
graphic group varied from the intercept in their likelihood to
have higher PCDs, the standard error of this estimate (mea-
sured using the mean absolute deviation), and the t value from a
two-sample t test. Positive (negative) estimate values reveal that
the PCDs increased (decreased), and larger absolute values of
the estimates highlight large differences compared to another
category in the same classification (e.g., female compared to
male in the sex classification). Values near zero indicate little
difference between categories. Significance was defined as the
95% confidence interval (i.e., |t|. 1.96).

For all participants regardless of the graphic type, demo-
graphics, and location, the mean PCD (i.e., combined misses
and false alarms over their 96 trials) was 0.397. Males tended
to make fewer costly decisions than did females, and this dif-
ference was significant (20.009 81, t 5 25.292; Table 1). For
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age groups, however, differences were not significant. Those
participants who were 35–59 years old had higher PCDs
(0.001 36, t 5 0.659), in general, than did those ages 18–34.
Conversely, participants who were 60–110 years old had lower
(20.004 37, t 5 21.684) PCDs than did participants ages
18–34. Results for ethnicity and race both yielded statistically
significant results. Participants who identified as Hispanic had
more combined misses and false alarms than those of non-
Hispanic ethnicity (0.008 72, t 5 2.685). Similarly, participants
who identified as either African American/Black (0.019 00,
t 5 5.757) or other (0.007 94, t 5 2.670) had higher PCDs than
their White counterparts. Finally, we examined whether tornado
exposure affected decision-making in this experiment, finding
that it had little impact on the PCDs (0.00028, t 5 0.310). Thus,
our results show that individuals who are female, Hispanic, Afri-
can American/Black, or other races had higher proportions of
costliest decisions, confirming our first hypothesis.

The results from the MRP analysis were then poststratified
into CWAs to address our second hypothesis (warning-
related decision-making will vary geographically). Figure 3
displays the predicted PCD scores for the multilevel model,
highlighting locations in dark red where there are higher
PCD scores. Our results show that there appears to be areas
of geographic differences in participants’ costliest protection
decisions. Mainly, these areas crossed southern portions of
the United States, including Southern California, the south-
central United States, the southeastern United States, and
the Atlantic coast. These differences appeared relatively mi-
nor, however}a CWA minimum of 0.391 and CWA maxi-
mum of 0.401}and not statistically significant in comparison
with the median (p 5 0.087 89). The differences amount to
about one decision during the 96 trials. This result was un-
expected, as prior research had shown that geographic loca-
tion affected risk perception, reception, comprehension,

TABLE 1. Summary statistics for the multilevel regression analysis; an asterisk (*) indicates 95% CI " |t| . 1.96 is significant.

Mean change in the ratio of the proportion of costliest decisions to all decisions from the intercept

Estimated difference from
intercept 5 0.397 06 Standard error t value

Sex: Group 1 (female) to group 2 (male) 20.009 81 0.001 85 25.292*
Age: Group 1 (18–34) to group 2 (35–59) 0.001 36 0.002 07 0.659
Age: Group 1 (18–34) to group 3 (60–110) 20.004 37 0.002 59 21.684
Ethnicity: Group 1 (non-Hispanic) to group 2 (Hispanic) 0.008 72 0.003 25 2.685*
Race: Group 1 (White) to group 2 (African American/Black) 0.019 00 0.003 30 5.757*
Race: Group 1 (White) to group 3 (other) 0.007 94 0.002 97 2.670*
Tornado exposure 0.000 28 0.000 92 0.310

FIG. 3. Predicted PCD estimates for the multilevel model applying poststratification.
Darker reds represent higher predicted PCD scores.
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and response to tornadoes (e.g., Allan et al. 2020; Ripberger
et al. 2020; Klockow et al. 2014; Peppler et al. 2018). Thus,
while our second hypothesis appeared to be supported visually,
a deeper look revealed that estimated tornado warning
decision-making (in terms of sheltering an asset) for any single
CWA does not vary significantly from other CWAs. In other
words, there is not an individual CWA that “stands out” as
having higher PCDs. We next examine if there are clusters of
higher PCDs by comparing each CWA with their neighboring
CWAs, rather than comparing them all individually.

It is important to note that the geographic patterns shown
in Fig. 3 are not based solely on the demographic variables,
but the combination of the demographic variables (sex, age,
ethnicity, and race) and the location of the CWA for each par-
ticipant. Because the MRP analysis revealed that sex, ethnic-
ity, and race had more influence on higher PCDs, these
demographic factors are weighted more heavily than age and
tornado exposure and account for more of the variation.

b. Spatial autocorrelation results

Last, we examined spatial variations in the data in a differ-
ent manner to determine if there are clusters of CWAs where
warning-related decision-making is more similar (our third
hypothesis). Using the Moran’s I statistic on the poststratified
multilevel model results, we found four prominent regions
that were spatially similar (darker green shades in Fig. 4):
1) the Intermountain West and far northwest Great Plains,
2) the Lake Superior region, 3) northern New England, and
4) much of the southern United States. Figure 5 displays the
p values for the Moran’s I statistic, indicating that CWAs with
positive spatial autocorrelation are statistically significant (red
colors). These results indicate that within each of the four
“regions,” the people in one of the CWAs (e.g., Duluth, Min-
nesota, CWA) make similar decisions as their neighboring
CWAs (e.g., Marquette and Green Bay, Wisconsin, CWAs).
Each distinct region, however, is not necessarily similar to

another region (e.g., people in Green Bay may not make the
same decisions as those in Atlanta, Georgia). Calculating Gi

identified a cluster for high values of the predicted PCDs in
Southern California and another cluster in the south-central
and southeastern United States (Fig. 6). These “hotspots” col-
locate with the predicted PCD estimates (Fig. 3).

c. t-test results

To assess the differences by demographic group (sex, eth-
nicity, and race) found in section 4a, we conducted t tests on
the full participant sample to see if these groups were more
prone to underestimate (more misses) or overestimate (more
false alarms) their risk. In terms of sex, differences in the per-
centage of misses for males versus females were not statisti-
cally significant (p 5 0.226); however, differences in false
alarms}0.240 for males and 0.247 for females}were signifi-
cant (p 5 0.013). This result indicates that female participants
in our study tended to overestimate their risk. Similarly, in
the case of ethnicity, there were not statistically significant dif-
ferences in the misses for Hispanics versus non-Hispanics
(p 5 0.819). Although the average percentage of false alarms
for Hispanics (0.251) appeared quite different than those for

FIG. 4. Local Moran’s I statistic for model predictions. Greens in-
dicate positive values of the local Moran’s I (similarity) and purples
indicate negative values of the local Moran’s I (dissimilarity). If I
were positive (negative), then it is surrounded by CWAs with
similar (different) values. The closer I is to 1 or 21 indicates the
magnitude of the relationship, just like R2 indicates the strength of
a linear relationship. Darker green (purple) CWAs are those more
similar (dissimilar) to their neighboring CWAs.

FIG. 5. The p values for local Moran’s I at the 95% confidence
interval. Red-shaded CWAs indicate those that are significantly
related to their neighboring CWAs. Blue-shaded CWAs do not
pass significance testing.

FIG. 6. The Gi statistic indicating hotspots and cold spots of the
PCDs. Reds indicate hotspots, greens indicate cold spots, and yel-
lows indicate little or no correlation with their neighboring CWAs.
Thus, reds are “hotspots” of PCDs.
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non-Hispanics (0.243), the p value of 0.060 was slightly too
high to be deemed significant. Still, Hispanics also tended to
overestimate their risk.

Interestingly, when examining race, the cause of different
PCD values was not more false alarms, but more misses. Pro-
portions of misses for White participants versus African
American/Black participants were 0.149 and 0.162, respec-
tively, and were significant (p 5 0.0002). Proportions of
misses for White versus other race participants were 0.149
and 0.156, respectively, and significant (p 5 0.029). For false
alarms, however, the differences were not significant for White
versus African American/Black participants (p 5 0.155) nor
for White versus other race participants (p5 0.476), indicating
that there was no significant difference between race groups in
their false alarm proportions. Hence, participants identifying
as African American/Black or other tended to underestimate
their risk.

5. Discussion

a. Demographics

The results of this study show that female, Hispanic, Afri-
can American/Black, or other race participants were more
likely than others in their demographic classification (i.e., sex,
ethnicity, race) to have higher PCDs. Previous studies have
identified these demographic groups as having high social vul-
nerability (e.g., Cutter et al. 2003; Cutter and Finch 2008;
Emrich and Cutter 2011). Hence, these groups may be more
adversely impacted by tornadoes than their male, non-
Hispanic, or White counterparts regardless of other demo-
graphic characteristics or environmental conditions.

Our results are consistent with those identified within
Klockow-McClain et al. (2020) using the same dataset. Those
authors noted that the higher average number of PCDs for
these demographic groups could result from them having
higher risk aversion, therefore sheltering more frequently and
incurring more false alarms.

Risk aversion helps explain why some of the demographic
groups we identified have higher PCDs. Our results show that
females have a higher overall proportion of false alarms com-
pared to males, consistent with other studies (e.g., Fothergill
1996; Comstock and Mallonee 2005; Nagele and Trainor 2012;
Ripberger et al. 2020). For instance, females are more likely
to personalize a tornado warning and take shelter (Fothergill
1996). The female participants in our experiment protected
the assets more frequently regardless of cost, therefore result-
ing in a higher proportion of costly decisions.

Klockow-McClain et al. (2020) also found that Hispanic
and African American/Black populations had a significantly
higher average proportion of protection decisions. Our results
indicate that while Hispanic participants were more risk
averse than non-Hispanic participants, African American/
Black and other race participants had higher overall propor-
tions of missed protections. Other studies also have mixed re-
sults regarding risk aversion with race and ethnicity (e.g.,
Riad 1997; Nagele and Trainor 2012; West and Orr 2007;
Trainor et al. 2015). For example, West and Orr (2007) found

that those who identified as a racial or ethnic minority felt they
were more vulnerable to hurricanes but were less likely than
White individuals to evacuate due to lack of resources or situa-
tional factors (lack of vehicle, taking care of children/elderly,
etc.). On the other hand, Trainor et al. (2015) could not find
race to be a significant factor in sheltering decisions during
tornado warnings. Because our study was a virtual decision ex-
periment, Hispanic, African American/Black, or other race in-
dividuals who felt at risk were able to shelter or not to shelter
assets without worrying about situational factors. Although
West and Orr (2007) examined the perception that Rhode
Island voters had about their residence’s vulnerability to a
major hurricane, their findings appear relevant to our study.
They found that experiencing different situations resulted in a
variety of responses that women and minorities would take as
compared to White males; hence, these studies highlighting
different responses or perceptions of women and minorities as
compared to White males likely are due to the different con-
texts for each study. For our decision experiment, participants
essentially had endless resources (because we did not “cap”
their spending), so they had different constraints than those of
other studies. Thus, it is not surprising that Hispanic, African
American/Black, or other race individuals had higher PCDs
for this study, as they did not have real-life barriers that may
have affected their decision-making.

The higher PCDs from female, Hispanic, African American/
Black, or other race participants also may be related to a
lack of knowledge or experience with tornadoes or the mis-
understanding of the warning message. Although sheltering
regardless of a tornado occurring is the recommendation of
the NWS, it is still important to make sure all populations
understand tornado warning messaging, so they can make
cost-effective sheltering decision, especially for those who
chose not to protect at all. Strader et al. (2021) found differ-
ences among CWAs in tornado risk, exposure, and vulnera-
bility that led them to recommend that NWS staff within
each CWA may need to give their environment consideration
and certain populations in their CWA special attention to ensure
that they have adequate information and education to make
appropriate warning-related decisions. For example, in CWAs
with high Hispanic populations, warning information can be pro-
vided in Spanish to ensure that everyone has access to life-saving
information, regardless of language (Trujillo-Falcón et al. 2021).
Our results align with these prior studies and recommendations.

b. Geography

Our results highlight that participants in Southern California,
the south-central United States, and the southeastern United
States had higher proportions of costliest decisions than others
across the contiguous United States (Figs. 3, 4, and 6), although
these differences were small. Analyses using MRP showed the
differences not to be significant, a somewhat surprising result
because previous studies demonstrated that there are geo-
graphic differences with tornado warning risk perception, re-
sponse, and comprehension (e.g., Allan et al. 2020; Ripberger
et al. 2020). Our spatial autocorrelation analysis, however,
did show significant results, and both analyses distinguished
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Southern California and the south-central and southeastern
United States as having populations making the costliest deci-
sions than other locations across the United States. These re-
gions have populations that are socially vulnerable (e.g., Cutter
et al. 2003; Cutter and Finch 2008; Emrich and Cutter 2011;
Strader et al. 2021), and the south-central and southeastern
United States are more exposed to tornado hazards (Fig. 2)
(e.g., Boruff et al. 2003; Harrison and Karstens 2017), have
higher numbers of tornado fatalities (e.g., Ashley 2007; Ashley
and Strader 2016), and have higher false alarm rates (Brotzge
et al. 2011; Strader et al. 2021).

The south-central and southeastern regions collocated with
regions of social vulnerability, tornado exposure, tornado fatali-
ties, and false alarms are interesting and important to note. For
instance, Strader et al. (2021) found that CWAs in the south-
eastern United States have higher concentrations of tornado fa-
talities, higher frequency of tornado watches and warnings,
longer tornado warning lead times, unwarned tornado reports,
and higher false alarms compared to other tornado-prone re-
gions. Thus, people may be choosing to shelter assets regardless
of cost because of their susceptibility to harm or damage from
tornadoes. The south-central United States also has higher tor-
nado frequency but lower false alarm rates (Boruff et al. 2003;
Ashley 2007; Brotzge et al. 2011; Ashley and Strader 2016). It is
possible, then, that forecasters have more experience issuing tor-
nado warnings, resulting in lower overall false alarm rates. How-
ever, people in the south-central United States are still exposed
to a higher frequency of tornadoes and, like their counterparts in
the southeastern United States, may also choose to shelter assets
regardless of cost rather than suffer potential damage.

Why might our results be different than other studies? First,
Lindell and Perry (2012) explained that people’s responses
within an experimental environment, such as ours, may not re-
flect real life. Experiments do not account for situational factors,
such as the environment or a person’s intent. A person may in-
tend to shelter, for example, but their current situation may pre-
vent them from seeking adequate shelter. Likewise, our results
may differ from other studies because there was no place attach-
ment in the virtual experiment. Recall that place links a particu-
lar location to ones’ experiences and worldviews, shaping their
behaviors and decisions. This virtual experiment of Klockow-
McClain et al. (2020) simulated tornado warnings in an arbi-
trary, virtual place that participants had no prior experience or
perception of. Although they may have instilled some of their
own experiences into their decisions, the lack of place attach-
ment may have caused them to rely only on the information
provided on the web page. Our results, therefore, might not re-
flect actual differences in decision-making based on demo-
graphics or CWA location.

c. MRP versus spatial autocorrelation

Both the MRP and spatial autocorrelation analyses identified
that participants in the southern portions of the United States
were more prone to making the costliest decisions than other re-
gions (Figs. 3 and 6), but the results were only significant from
the spatial autocorrelation. Recall that multilevel models ignore
potential between-neighbor correlations, as they treat each

CWA as its own unit rather than comparing it to its neighboring
CWA (Xu 2014). Therefore, when assessing the MRP results
for spatial variation, each individual CWA was compared with
each other CWA and differences between each pair were found
to be insignificant. Spatial autocorrelation, on the other hand,
compares neighboring CWAs for spatial patterns. In that case,
CWAs in the southern United States had significantly similar
PCDs to their neighbors; there is a geographic pattern, or
“hotspot,” of the proportion of costliest decisions in the south-
ern United States. Thus, we recommend that between-neighbor
correlations and broader patterns be evaluated using spatial
autocorrelation.

d. Limitations

There were several limitations of the dataset, methods, and
geographic scale in this study. Although we used a high-quality
and high-resolution dataset from a standardized survey, the ex-
periment design may have been a weakness for our study. We
noted that the virtual space where participants made decisions
may have disassociated them from how they would make deci-
sions in real life, such as by a lack of situational factors like envi-
ronmental cues or interaction with family or friends (Lindell
and Perry 2012). Also, the large number of trials (n 5 96) that
were needed to thoroughly test the cartographic designs in the
original experiment of Klockow-McClain et al. (2020) may have
resulted in too much complexity (e.g., too many independent
variables) to answer our three hypotheses.

A great benefit of MRP for areas with small sample sizes is
that it can perform cross tabulations. If there are few mem-
bers of a certain demographic group in a CWA, for example,
MRP can apply the same demographic group from another
CWA in the dataset to account for the small sample (Lax and
Phillips 2009). This process may have affected our results nega-
tively, however. Because our intent was to examine the effect of
geographic location, the application of information from an-
other CWA may have produced unrepresentative results of the
actual populations. The impact of the MRP technique should be
diminished where there were adequate sample sizes of demo-
graphic groups. As Klockow-McClain et al. (2020) oversampled
for Hispanic and African American/Black participants, this limi-
tation likely did not have much impact on our results.

In addition, the geographic scale of CWAs may have been
a limitation to our study. We selected CWAs because our re-
sults could then be directly useful for NWS forecasters in their
already-defined jurisdiction. Also, based on the dataset, there
was insufficient sampling within counties for MRP to work ef-
fectively. It is possible, however, that the CWA scale was too
large to capture the nuances of decision-making. For instance,
Peppler et al. (2018) found that residents of central Oklahoma
had drastically different views of risk and response to torna-
does, even across neighboring counties. Future work using
higher-resolution data could help determine if there is a more
desired scale for this analysis to work. Still, NWS forecasters
are faced with the reality of providing warnings, forecasts,
and decision-support services to all people across their CWA.
Hence, CWA-scale analyses are relevant to NWS staff and
policymakers. We recommend that future work investigate
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decision-making at smaller scales to provide forecasters with
localized information about the populations they serve.

6. Conclusions

This study provides an overview of geographic variations of
tornado-warning decision-making as related to protecting an
asset. Three hypotheses were posed in this study: 1) there will
be differences in the decisions made by individuals from dif-
ferent demographic groups as related to protecting an asset
during a tornado warning, 2) these differences will contribute
to warning-related decision-making that varies geographically
across the contiguous United States, and 3) there will be clus-
ters of NWS CWAs where warning-related decision-making
will be more similar than other clusters. Using MRP, four
demographic groups were identified as being more prone
to making the costliest decisions: female, Hispanic, African
American/Black, and other races, confirming our first hypoth-
esis. However, the differences between White and non-White
populations or among CWAs were relatively small or, in some
cases, statistically insignificant. Poststratification and spatial au-
tocorrelation of the multilevel model results revealed that peo-
ple located in CWAs in the southern portions of the United
States have higher proportions of costliest decisions. The MRP
results were not deemed significant, countering our second hy-
pothesis. However, results from the spatial autocorrelation iden-
tified clusters of similarly high proportions of costliest decisions,
supporting our third hypothesis. These CWAs were associated
with areas previously shown in the literature to have high social
vulnerability, high tornado exposure, tornado fatalities, and
false alarm rates (in the south-central and southeastern United
States). The subtle spatial variations in decision-making found
in this study highlight that although decision-making is a com-
plex, place-dependent, and individual process, there are large-
scale spatial patterns that can help inform warning providers
where extra efforts to communicate risk are needed.

The results of our study are relevant for decision-makers
and risk communicators for several reasons. First, the demo-
graphic groups identified are also groups that previous studies
indicate have higher social vulnerability. This result is impor-
tant for risk communicators, such as NWS forecasters, broad-
cast meteorologists, or local emergency managers, to know so
they can help the populations they serve. Second, the south-
central and southeast United States were consistently identi-
fied as a region with higher PCDs and are important because
this region has more tornado exposure, tornado fatalities,
false alarm rates, and social vulnerability among its popula-
tions. Risk communicators in these areas should also be aware
that their populations may not make wrong decisions, but,
rather, are more risk averse. The nuance between missed pro-
tections and risk aversion should be pursued in future work,
as it is important to encourage those who are risk averse to
continue their sheltering behaviors while searching for better
ways to communicate with those who chose not to protect.
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